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Abstract 17 

During the recent COVID-19 related quarantine period, anecdotal evidence emerged pointing to 18 

a rapid, sharp improvement in water quality in some localities. Here we present results from an 19 

analysis of the impacts of the COVID-19 quarantine period using two long-term coastal water 20 

quality datasets. These datasets rely on sampling that operates at appropriate timescales to 21 

quantify the influence of reduced human activity on coastal water quality and span coastal 22 

ecosystems ranging from low human influence to highly urbanized systems. We tested two 23 

hypotheses: 1) reduced tourism during the COVID-19 quarantine period would lead to improved 24 

coastal water quality, and 2) water quality improvements would scale to the level of human 25 

influence, meaning that highly urbanized or tourist-centric watersheds would see greater 26 

improvement than more rural watersheds. A localized reduction in fecal indicator bacteria was 27 

observed in four highly impacted regions of the Texas (USA) coast, but this pattern was not 28 

widespread. In less impacted regions, the signature of natural, decadal environmental variability 29 

(e.g., dissolved oxygen and turbidity) overwhelmed any potential signature of reduced human 30 

activity. Results from this study add to the growing body of literature on the environmental 31 

impacts of the COVID-19 quarantine period, and when considered with existing literature, 32 

emphasize that coastal water quality improvements appear to be ephemeral and reserved for the 33 

most severely affected (by human activity) systems. Furthermore, results show the importance of 34 

assessing COVID-19 signatures against long-term, decadal datasets that adequately reveal a 35 

system’s natural variation.  36 
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1. Introduction 40 

Humans can have a considerable influence on coastal water quality, primarily through actions 41 

that result in pollutant discharge to waterbodies (Hopkinson et al. 1995; Bricker et al. 2008). For 42 

example, numerous studies have documented the growing prevalence of cultural eutrophication 43 

in coastal ecosystems worldwide (see e.g., Bricker et al. 2008), which arises from excessive 44 

nutrient (nitrogen and phosphorus) loadings from watersheds influenced by human activity. 45 

Indeed, coastal systems with watersheds that are urbanized or that have significant agricultural 46 

influence tend to be more prone to eutrophication than systems with less disturbed watersheds 47 

(NRC 2000; Bricker et al. 2008). Common symptoms of eutrophication include persistent algal 48 

blooms, occasionally including harmful taxa, as well as decreased light penetration and 49 

hypoxia/anoxia (NRC 2000; Bricker et al. 2008). Coastal systems with urbanized watersheds 50 

also tend to have a greater propensity for fecal bacterial pollution, which carries with it 51 

significant risks for human health (Mallin et al. 2001, 2009; Handler et al. 2006). Natural 52 

environmental variability, and rainfall in particular, also influences the magnitude of loadings 53 

and thus affects coastal water quality. For example, high rainfall conditions that lead to high 54 

river discharge to coastal systems often delivers significant quantities of pollutants and sediment, 55 

whereas drought conditions can lead to sharp reductions in loadings (e.g., Paerl et al. 2006; Wetz 56 

and Yoskowitz 2013).  57 

 58 

During the recent COVID-19 related quarantine period, anecdotal evidence emerged pointing to 59 

a rapid, sharp improvement in water quality. For example, it was reported that canals in Venice, 60 

Italy, experienced an unprecedented (in modern times) improvement in visibility due to a 61 

reduction in human activity: “Venice canals are clear enough to see fish as coronavirus halts 62 
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tourism in the city”, March 18th, 2020 edition of ABC News, 63 

https://abcnews.go.com/International/venice-canals-clear-fish-coronavirus-halts-tourism-64 

city/story?id=69662690. In particular, emphasis was placed on a reduction in tourists as being a 65 

major contributor to this improvement in estuarine water quality. Other studies have now been 66 

published from rivers, lakes, and coastal waters worldwide documenting localized improvements 67 

in various water quality constituents as a result of the COVID-19 quarantine period (Lotliker et 68 

al., 2021; Mishra et al., 2020; Yunus et al., 2020).  69 

 70 

Observations of improved water quality highlight how the COVID-19 quarantine period and data 71 

collected during it may offer a rare opportunity to directly quantify human influence on aquatic 72 

ecosystems as well as potential recovery times from various forms of human influence. 73 

Nonetheless, assessments such as this are challenged by a need for long-term datasets in order to 74 

tease apart effects of the reduction in human influence from natural variability. For example, the 75 

aforementioned improvement in Venice’s canal water clarity was subsequently attributed to a 76 

combination of reduced boating activity that would otherwise resuspend sediments, and a >50% 77 

reduction in precipitation in 2020 compared to historical conditions that resulted in less 78 

sediment-laden runoff and nutrients that would otherwise stimulate algal blooms (Braga et al., 79 

2020).  80 

 81 

Here we present results from an analysis of the impacts of the COVID-19 quarantine period 82 

using two coastal water quality datasets. These datasets rely on sampling that operates at 83 

appropriate timescales to quantify the influence of reduced human activity on coastal water 84 

quality and span coastal ecosystems ranging from low human influence to highly urbanized 85 
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systems. They are also of long duration, allowing for shorter-term effects of the COVID-19 86 

quarantine to be placed in a longer-term context and to separate out the effects of the quarantine 87 

from natural variability. The primary hypothesis was that reduced tourism during the COVID-19 88 

quarantine period would lead to improved coastal water quality, namely lower fecal indicator 89 

bacterial abundance and turbidity as well as higher dissolved oxygen. A secondary hypothesis 90 

was that water quality improvements would scale to the level of human influence, meaning that 91 

highly urbanized or tourist-centric watersheds would see greater improvement than more rural 92 

watersheds.   93 

 94 

2. Methods 95 

2.1. Data acquisition:  96 

Water quality data were obtained from the National Estuarine Research Reserve’s (NERR; 97 

https://coast.noaa.gov/nerrs/) long-term water quality monitoring program and the Texas Beach 98 

Watch bacterial sampling program (https://cgis.glo.texas.gov/Beachwatch/). The NERR 99 

maintains long-term monitoring stations at sites throughout the United States. For this study, we 100 

utilized water temperature (ºC), salinity, dissolved oxygen (DO; % saturation) and turbidity 101 

(FNU/NTU) data from five NERR sites that are representative of various geographic regions of 102 

the United States that have distinct hydrologic drivers and different levels of human influence. 103 

These include three NERR sites from the southern United States where seasonal tourism and 104 

subsequent human influence on the environment would be most pronounced (North Inlet-105 

Winyah Bay NERR, South Carolina; North Carolina NERR; Mission-Aransas NERR, Texas), 106 

one upwelling-influenced site on the United States West Coast (Elkhorn Slough NERR, 107 
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California), and one urbanized site on the United States Northeast Coast (Narragansett Bay 108 

NERR, Rhode Island) (Figure 1; Supplemental Table 1).  109 

 110 

The Texas Beach Watch program is managed by the Texas General Land Office and assesses the 111 

fecal indicator bacteria (FIB), enterococci, for the purpose of notifying the public via beach 112 

advisories when FIB levels are above the EPA’s beach action value (USEPA, 2012). Routine 113 

water sampling has been on-going for over 15 years, with samples being collected on a weekly 114 

basis during peak season (i.e., March and May through September) and a bi-weekly basis during 115 

non-peak season. Data from 2009-2020 were obtained from 159 monitoring sites in 61 beaches 116 

throughout the following eight coastal counties: Jefferson, Harris, Galveston, Brazoria, 117 

Matagorda, Aransas, Nueces, and Cameron (coordinates available at 118 

www.texasbeachwatch.com). In accordance with an EPA-approved Quality Assurance Project 119 

Plan (QAPP) (Texas Beach Watch Program, 2015), enterococci were quantified using the 120 

Enterolert test method (IDEXX Laboratories, Westbrook, Maine, US) and reported as the most 121 

probable number (MPN) 100 mL-1. A small subset of the earlier samples that were obtained in 122 

2009 and 2010 were analyzed with the EPA 1600 membrane filtration method (USEPA, 2006), 123 

also in accordance with the QAPP, and reported as colony forming units (CFU) 100 mL-1. For 124 

the purpose of this study, enterococci units are reported as MPN 100 mL-1.  125 

 126 

Hotel locations and visit patterns provide insights into coastal tourism activity (Silva et al., 127 

2021). To assess coastal tourism prior to and during the COVID-19 pandemic, weekly hotel 128 

visits were obtained from SafeGraph (https://www.safegraph.com), which were generated from 129 

privacy-compliant and anonymized mobile device location data. This dataset includes visitor 130 
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aggregations from 4.5 million points of interest in the U.S. The hotels were identified within the 131 

North American Industry Classification System (NAICS) code 721110. To capture hotel visits in 132 

the Texas Beach Watch and NERR stations, all hotels in the eight coastal counties in Texas 133 

where the Beach Watch sites were located and 13 counties whose centers are located within 30 134 

miles of the five NERR sites were included.  135 

 136 

2.2. Data analysis: 137 

2.2.1. NERR water quality - High frequency water quality data including turbidity, salinity, DO, 138 

and water temperature were recorded in 15-minute intervals at the five NERR sites. Each site had 139 

3-4 sampling stations from which data were utilized (see Table 1 for list of stations). 140 

States/counties in which the sites are located began implementing quarantine orders in the 141 

timeframe of mid-March, 2020. Data from March-July 2020 were compared to data from March-142 

July 2010-2019 with a t-test using R (version 3.6.1) and RStudio (version 1.2.1335). Due to a 143 

non-normal distribution, turbidity data were log-transformed prior to analysis. Linear models 144 

were generated for each NERR station to relate deviations from the long-term average (i.e., daily 145 

mean values in 2020 minus daily mean values in 2010-2019) for response variables (DO and 146 

turbidity) to the explanatory variables (salinity, temperature, and weekly hotel visits as a proxy 147 

for coastal tourism). Finally, weekly visit patterns in 2020 were compared to 2019 with a t-test. 148 

 149 

2.2.2. Beach Watch bacteria - The presence of censored data in the enterococci measurements 150 

required the use of censored statistical tests from the NADA package in R (Lee, 2017). Data 151 

from 2020 were compared to historical data (i.e., 2009-2019) using the cendiff test; as data had 152 

only been recorded through October 2020 at the time of this analysis, data from November and 153 
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December of each year were excluded from the comparison. Correlations between enterococci 154 

levels and weekly visits in 2020 were computed using the cenken test in R (Kendall’s tau 155 

correlation coefficient) and weekly visit patterns in 2020 were compared to 2019 with a t-test.  156 

 157 

3. Results 158 

3.1. NERR water quality: 159 

A sharp decline in the number of visits to hotels surrounding NERR stations occurred 160 

immediately following stay-at-home orders in March 2020 (Figure 2). Whereas North Inlet, 161 

North Carolina, and Mission-Aransas visits increased to pre-COVID (2019) levels by summer 162 

2020, Elkhorn Slough and Narragansett Bay maintained lower levels of hotel visits throughout 163 

the entire timeframe of this study (t-test; p < 0.05).  164 

 165 

March-July water temperature was significantly higher in Mission-Aransas during 2020 at all 166 

stations compared to 2010-2019 (Figure 3, Table 1). Elkhorn Slough and North Inlet had at least 167 

two stations with higher temperatures in 2020, while cooler temperatures were observed at 168 

Narragansett Bay. Water temperature trends were spatially variable in North Carolina. In 169 

general, the water temperature data showed a high degree of temporal variability in each estuary. 170 

Salinity was lower in 2020 compared to 2010-2019 at all stations in Elkhorn Slough, North 171 

Carolina, and North Inlet, but higher in Mission-Aransas (Figure 4, Table 1). Salinity trends were 172 

spatially variable in Narragansett Bay. Turbidity was higher in 2020 compared to 2010-2019 in 173 

North Inlet and Narragansett Bay, but spatially variable in the other three estuaries (Figure 5, 174 

Table 1). A high degree of temporal variability was also observed. DO was lower in North Inlet 175 
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in 2020, but spatially variable in the other estuaries, with all sites showing a high degree of 176 

temporal variability (Figure 6, Table 1).  177 

 178 

Deviations in salinity and temperature as well as hotel visits explained approximately 11-35% of 179 

the variance in turbidity and DO, depending on the site (Table 2). In the case of turbidity, four 180 

sites (Elkhorn Slough, Narragansett Bay, North Carolina, North Inlet) showed a significant 181 

negative correlation with salinity and none showed a positive correlation (Table 2). The 182 

relationship between turbidity and water temperature was less consistent, with a positive 183 

correlation observed in North Carolina and North Inlet and a negative correlation observed in 184 

Narragansett Bay (Table 2). In terms of weekly hotel visits, one site had a positive correlation 185 

with turbidity (Elkhorn Slough) and two sites had a negative correlation (North Carolina and 186 

North Inlet). In the case of DO, three sites (Elkhorn Slough, Mission-Aransas, North Inlet) 187 

showed a significant positive correlation with salinity and none showed a negative correlation 188 

(Table 2), while all five sites showed a negative correlation with water temperature. Two sites 189 

had a positive relationship between DO and hotel visits (Elkhorn Slough and Narragansett Bay) 190 

and two had a negative relationship between these variables (North Carolina and North Inlet).  191 

 192 

3.2. Beach Watch bacteria: 193 

Nearly every Texas county in this study had a notable decrease in weekly visits during the stay-194 

at-home order in March-April, 2020, and the majority of counties also experienced significantly 195 

fewer visits in 2020 than 2019. The exception to this was Matagorda, which received more visits 196 

in 2020, and Aransas and Cameron, which had no difference in weekly visits (t-test; p < 0.05; 197 

Figure 7). To test if FIB levels were lower during the stay-at-home order compared to previous 198 
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years, enterococci concentrations in March-July 2020 were compared to the historical 199 

concentrations from 2009-2019. In January through March of 2020, FIB levels tracked with 200 

historical concentrations with the exception of Matagorda, where FIB levels were slightly higher 201 

than the historical average (Figure 8). Following the quarantine orders in March, the counties 202 

showed diverging trends (Figure 8). The majority of counties showed increasing FIB levels that 203 

accompanied the onset of spring and early summer with the exception of Harris and Cameron.  204 

Nueces, Aransas, Jefferson, and Galveston exhibited positive correlations between enterococci 205 

and the number of weekly hotel visits (Kendall’s tau: 0.17, 0.14, 0.12, and 0.05 respectively), 206 

whereas Matagorda exhibited an inverse correlation (Kendall’s tau: -0.07). Cameron and Harris 207 

Counties did not experience significant relationships between these variables.  208 

 209 

4. Discussion 210 

The COVID-19 pandemic resulted in unprecedented changes to economic and social behaviors 211 

worldwide. One such change was the drastic reduction in the number of people traveling for 212 

vacations and holidays. This study set out to answer the question: did the COVID-19 quarantine 213 

period lead to a reduction in human influence on coastal ecosystems, manifesting as improved 214 

water quality? The primary hypothesis, that reduced tourism during the COVID-19 quarantine 215 

period would lead to improved coastal water quality, and the secondary hypothesis, that water 216 

quality improvements would scale to the level of human influence, were supported at four highly 217 

impacted regions where FIB concentrations decreased during the quarantine period. However, 218 

these hypotheses were generally not supported for other water quality indicators, such as 219 

dissolved oxygen and turbidity, that commonly demonstrate high natural environmental 220 

variability. An emerging theme from these results and current literature findings is that 221 
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temporary, quarantine-associated water quality improvements appear to only occur in 222 

ecosystems severely impacted by human activity, such as those receiving significant quantities of 223 

industrial discharge or poorly treated sewage. Furthermore, an important theme from our analysis 224 

of the NERR data in particular is that natural climate variability can easily overwhelm the 225 

COVID-19 quarantine signature, emphasizing the need for data collections at appropriate 226 

timescales and datasets that are of sufficient duration to separate the signature of events such as a 227 

COVID-19 quarantine from this natural variability. We elaborate on these themes below.  228 

 229 

4.1. Findings from the NERR data analysis – a key role for natural variability 230 

Water temperature and salinity are integrative of the effects of natural environmental drivers 231 

such as weather and climatological conditions that affect air temperature and rainfall, wind-232 

forcing of ocean circulation features (in the case of upwelling systems), and tides, among other 233 

factors. These same features are also important natural drivers of water quality indicators such as 234 

turbidity and DO through their effects on material loadings to coastal systems as well as on gas 235 

solubility (in the case of DO). Thus, water temperature and salinity can serve as proxies for the 236 

larger-scale drivers of variability in e.g., turbidity and DO, as well as other water quality 237 

indicators.  238 

 239 

As observed in the Venice Canal, humans can have an important influence on estuarine turbidity, 240 

either as an artifact of what we put into a system (e.g., wastewater effluent that fuels algal 241 

blooms) or as a direct impact of activities such as boating (Braga et al., 2020). Nonetheless, 242 

results from this study suggest that natural environmental variability likely overwhelmed any 243 

signature of human influence on turbidity in the systems that were examined. For example, 244 
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turbidity was negatively correlated with salinity at four NERR sites (Elkhorn Slough, 245 

Narragansett Bay, North Carolina, North Inlet), emphasizing the role of rainfall that either leads 246 

to increased (high rainfall, low salinity) or decreased (low rainfall, high salinity) particle loading 247 

from watersheds and turbidity in the estuary. In the case of Elkhorn Slough, turbidity was 248 

generally below average for the first half of 2020, but natural environmental variability can at 249 

least partially explain this as it coincided with above average salinities and below average late 250 

winter rainfall. Turbidity subsequently increased through mid-April as rainfall increased, but 251 

nonetheless turbidity remained below average through early June until upwelling commenced. 252 

We cannot rule out a role for decreased human activity in the below average turbidity as well, 253 

given its correlation with hotel visits and the low number of visits during that timeframe. In 254 

contrast to the below average turbidity in Elkhorn Slough during the first half of 2020, instances 255 

of above average turbidity were documented in Narragansett Bay (April-May 2020), North 256 

Carolina (early January, March-April 2020), and for much of the first half of 2020 at North Inlet. 257 

In each of these cases, the above average turbidity corresponded with either a sharp drop in 258 

salinity (Narragansett Bay) or prolonged periods of below average salinity (North Carolina, 259 

North Inlet), pointing to the likelihood of increased input of riverine particulate matter as a being 260 

a driver. It must be acknowledged that the R2 for turbidity-environmental relationships was low, 261 

which indicates that other factors not represented by temperature or salinity may have also 262 

affected turbidity. One obvious factor is wind-driven resuspension of sediments, which is known 263 

to play a role in estuarine turbidity (Bever et al., 2018; McCarthy et al., 2018), with some 264 

systems being more susceptible than others.  265 

 266 
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DO is often used as an indicator of human influence on coastal environments, namely because it 267 

is affected by factors such as algal production and bacterial respiration that are themselves 268 

influenced by the eutrophication process (Cloern, 2001; Anderson et al., 2002; Rabalais et al., 269 

2009, 2010). Indeed, both short- and long-term declines in DO have been linked to excessive 270 

algal production and subsequent biomass degradation in eutrophying waterbodies (Kemp et al., 271 

2005; Diaz and Rosenberg, 2008; Rabalais et al., 2010). Watershed organic matter loadings can 272 

also fuel bacterial respiration (Paerl et al., 1998; Servais et al., 1987; Abril et al., 2002; Mallin et 273 

al., 2002; Petrone et al., 2009) and tend to be enhanced in systems with land use that is 274 

influenced by humans (Servais et al., 1987; Abril et al., 2002). In addition to biological 275 

influences, environmental variability also affects DO. For example, rainfall often modulates the 276 

loadings of organic matter, and both salinity and temperature directly affect DO solubility, with 277 

DO solubility showing inverse correlations with both. Because of the expected reduction in 278 

human waste streams during the COVID-19 quarantine period due to reduced tourism, we 279 

hypothesized that DO would be above average in 2020. The NERR data did not show this, 280 

however, and instead displayed a high degree of both short timescale and spatial variability in 281 

DO. Where significant trends were observed, ten out of seventeen sampling stations in the NERR 282 

system showed below average DO while only five out of seventeen showed above average DO. 283 

The below average DO was centered in the Elkhorn Slough, North Carolina, and North Inlet 284 

systems, which we attribute to higher riverine loadings of organic matter that fueled bacterial 285 

respiration, an observation supported by prolonged periods of below average salinity in those 286 

systems in 2020. At the five stations where DO was above average in 2020, three can be 287 

explained, at least in part, by higher oxygen solubility due to below average temperature (Potters 288 

Cove, T-Wharf of Narragansett Bay; Research Creek of North Carolina; Table 1). In the case of 289 
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the North Carolina station, we cannot rule out a role for decreased human activity in the above 290 

average DO as well, given its negative correlation with hotel visits and the low number of visits 291 

for part of the record in 2020. Nonetheless, there are no other examples of reduced visitors 292 

leading to increased DO in this dataset. Thus, there was no obvious improvement in DO as a 293 

result of the COVID-19 quarantine. Only Copano West (Mission-Aransas) displayed above 294 

average DO that cannot be explained based on temperature and salinity.   295 

 296 

4.2. Findings from the Beach Watch data analysis – conflicting site-specific patterns in relation 297 

to human populations 298 

FIB levels were frequently higher in 2020 than the long-term average (i.e., 2009-2019), which 299 

agrees with a decade-long increase in enterococci throughout coastal Texas (Powers et al., 2021). 300 

This finding was particularly true in the months following the original stay-at-home order and 301 

throughout the summer. However, several counties also experienced lower FIB levels 302 

sporadically throughout 2020. This trend was prominent in Matagorda and Cameron, the latter of 303 

which has rarely recorded enterococci levels in exceedance of the beach action value in the past 304 

decade (Powers et al., 2021). In fact, Cameron was the only county in this study that has shown 305 

an inverse correlation between time and long-term measurements of enterococci (Powers et al., 306 

2021). The low FIB levels may be attributed to watershed protection plans and subsequent water 307 

quality improvements that are taking place in the Lower Laguna Madre and Arroyo Colorado 308 

(TCEQ, 2020a; TCEQ, 2020b).  309 

 310 

In terms of the number of hotel visits, Matagorda was the only county that received more visits 311 

in 2020 than 2019, although it did not see a simultaneous increase in FIB levels. Rather, this 312 
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county showed a unique trend of lower levels of FIB accompanying an increase in visits. It is 313 

possible that the enterococci originated from animal sources other than humans, and wildlife 314 

inputs could be obfuscating the impacts of human fecal pollution. For example, Matagorda is 315 

home to many critical wildlife habitats, including several coastal bird rookeries and sanctuaries 316 

(Weber et al., 2015) and it has one of the largest cattle populations in coastal Texas 317 

(http://www.texascounties.net/statistics/cattle2017.htm).  318 

 319 

Nueces, Aransas, Jefferson, and Galveston Counties experienced direct correlations between FIB 320 

and the number of hotel visits. This direct relationship suggests that a larger portion of 321 

enterococci in these counties may be attributed to human waste than in the other locations 322 

throughout the study. All four reported a spike in June, when anecdotal evidence from news 323 

reports indicated that there was a sharp increase in beach tourism due to the lifting of some 324 

COVID-19 restrictions (https://www.kristv.com/news/coronavirus/beaches-draw-crowds-325 

saturday; https://www.kiiitv.com/article/news/beaches-will-remain-open-this-fourth-of-july-but-326 

there-could-be-some-rule-changes-heres-why/503-58d8bab2-9af8-42aa-b16f-5b8c5ac6271e). 327 

These findings offer some support for our secondary hypothesis that water quality improvements 328 

would scale to the level of human influence, as all of these counties belong to a region 329 

characterized by high levels of coastal tourism. Nueces has previously been identified as a 330 

hotspot of bacterial pollution (TCEQ, 2018), and in September of 2020, the EPA and the city of 331 

Corpus Christi (Nueces) entered into a consent decree which requires the city to improve its 332 

sanitary sewer system to prevent violations of the Clean Water Act, including illegal discharge of 333 

sewage waste into receiving environments (https://www.epa.gov/sites/production/files/2020-334 

09/documents/corpuschristi-cd.pdf). Furthermore, previous source tracking studies have 335 
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identified abundant human waste in both Nueces and Aransas (Powers et al., 2020; Powers et al., 336 

In press). Nonetheless, the low correlation values in these counties and the lack of correlation 337 

elsewhere indicate that fecal bacteria pollution is likely influenced by a multitude of additional 338 

factors that were not included in this study, including rainfall, sanitary sewer overflows, onsite 339 

sewage facilities, and underlying infrastructure conditions (Converse et al., 2011; Passerat et al., 340 

2011; Sauer et al., 2011; Sowah et al., 2017; Zeki et al., 2020). 341 

 342 

5. Conclusions 343 

Results from this study highlight the lack of a widespread impact of the COVID-19 quarantine 344 

period on estuarine water quality. In the 2020 NERR data, turbidity and DO variance from the 345 

long-term average could be explained largely by natural fluctuations in the environment, as 346 

denoted by salinity and temperature variability. This was despite inclusion of NERR sites 347 

spanning a continuum of watershed land uses from high impact (significant urban influence) to 348 

low impact (e.g., forests and wetlands), and susceptibility to pollutants as shown by the range of 349 

residence times. In the Texas bacterial data, four locations demonstrated a direct relationship 350 

between bacteria levels and the number of visits: Aransas, Jefferson, Galveston and Nueces 351 

Counties, which have a long history of impaired water quality due to suspected sewage 352 

infrastructure degradation. Overall, these results add to the growing body of literature on the 353 

environmental impacts of the COVID-19 quarantine period, and when considered with existing 354 

literature, emphasize that coastal water quality impacts appear to be ephemeral and reserved for 355 

the most severely affected (by human activity) systems. In addition, the results suggest caution is 356 

in order when interpreting conclusions from studies that lack historical baseline data or that do 357 

not account for natural variability. 358 
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Figure Legends 

 

Figure 1. Map of the National Estuarine Research Reserve study sites. 

 

Figure 2. Number of weekly visits to hotels in 2019 (blue) compared to 2020 (red) in A) Elkhorn 

Slough, B) Mission Aransas, C) Narragansett Bay, D) North Carolina, and E) North Inlet.  

 

Figure 3. Daily mean water temperature in 2020 compared to 2010-2019; shaded regions 

represent +/- standard deviation. A) Elkhorn Slough (n = 4 stations), B) Mission-Aransas (n = 3 

stations), C) Narragansett Bay (n = 3 stations), D) North Carolina (n = 4 stations), E) North Inlet 

(n = 3 stations).  

 

Figure 4. Daily mean salinity in 2020 compared to 2010-2019; shaded regions represent +/- 

standard deviation.  

A) Elkhorn Slough (n = 4 stations), B) Mission-Aransas (n = 3 stations), C) Narragansett Bay (n 

= 3 stations), D) North Carolina (n = 4 stations), E) North Inlet (n = 3 stations).  

 

Figure 5. Daily mean turbidity in 2020 compared to 2010-2019; shaded regions represent +/- 

standard deviation.  

A) Elkhorn Slough (n = 4 stations), B) Mission-Aransas (n = 3 stations), C) Narragansett Bay (n 

= 3 stations), D) North Carolina (n = 4 stations), E) North Inlet (n = 3 stations).  

 

Figure 6. Daily mean dissolved oxygen (% saturation) in 2020 compared to 2010-2019; shaded 

regions represent +/- standard deviation.  

A) Elkhorn Slough (n = 4 stations), B) Mission-Aransas (n = 3 stations), C) Narragansett Bay (n 

= 3 stations), D) North Carolina (n = 4 stations), E) North Inlet (n = 3 stations).  

 

Figure 7.  Number of weekly visits to hotels in 2019 (blue) compared to 2020 (red) in A) 

Jefferson, B) Harris, C) Galveston, D) Brazoria, E) Matagorda, F) Aransas, G) Nueces, and H) 

Cameron Counties of Texas (United States of America).  

 

Figure 8. Concentration of enterococci (data aggregated based on daily median values) in 2020 

(red triangles) compared to the long-term average in 2009-2019 (blue circles) in A) Jefferson, B) 

Harris, C) Galveston, D) Brazoria, E) Matagorda, F) Aransas, G) Nueces, and H) Cameron 

Counties. Loess curves are shown as red lines for 2020 data and blue lines for 2009-2019 data.   

 

 

 



















Table 1. Comparison of turbidity (FNU/NTU), salinity, dissolved oxygen (%), and water 

temperature (ºC) in 2020 (March-July) to average values from 2010-2019 (March-July). *Due to 

a non-normal distribution, turbidity data were log-transformed prior to analysis. Green boxes 

indicate the variable was significantly lower in 2020; red boxes indicate the variable was 

significantly higher in 2020 (t-test; p < 0.001). White boxes indicate no significant difference. 

 

NERR site Station name Turbidity* 

(FNU/NTU) 

Salinity 

 

Dissolved 

oxygen (%) 

Temperature 

(ºC) 

Elkhorn  

Slough 

Azevedo Pond 
    

North Marsh 
    

South Marsh 
    

Vierra Mouth 
    

Mission-

Aransas 

Aransas Bay 
    

Copano Bay East 
    

Copano Bay West 
    

Narragansett 

Bay 

Nag Creek 
    

Potters Cove 
    

T-Wharf Surface 
    

North 

Carolina 

East Cribbing 
    

Loosin Creek 
    

Research Creek 
    

Zeke’s Basin 
    

North Inlet 

Clambank 
    

Debidue Creek 
    

Oyster Landing 
    

 

 

 

 



Table 2. Results of linear models relating deviations in explanatory variables to deviations in response variables (p < 0.05). ns = 

nonsignificant model.  

 

NERR site Response variable 

Significant explanatory variable(s) and 

sign of relationship (+ or -) Adjusted R2 

Elkhorn Slough 

Turbidity Salinity (-) 

Hotel visits (+) 

0.27 

DO Salinity (+) 

Temperature (-) 

Hotel visits (+) 

0.35 

Mission-Aransas 

Turbidity ns ns 

DO Salinity (+) 

Temperature (-) 

0.15 

Narragansett Bay 

Turbidity Salinity (-) 

Temperature (-) 

0.30 

DO Temperature (-) 

Hotel visits (+) 

0.11 

North Carolina 

Turbidity Salinity (-) 

Temperature (+) 

Hotel visits (-) 

0.28 

DO Temperature (-) 

Hotel visits (-) 

0.19 

North Inlet 

Turbidity Salinity (-) 

Temperature (+) 

Hotel visits (-) 

0.32 

DO Salinity (+) 

Temperature (-) 

Hotel visits (-) 

0.33 

 

 






